您的位置首页生活百科

在三角形ABC中,AB=AC

在三角形ABC中,AB=AC

的有关信息介绍如下:

在三角形ABC中,AB=AC

1)因为AB=AC,P是BC的中点

所以AP⊥BC,且AP=CP(三线合一)

在直角三角形ABP中,由勾股定理,得AB^2=AP^2+BP^2

即AB^2-AP^2=BP^2=BP*CP

2)过A作AF⊥BC,垂足为F

下面以P在线段BF上为例,即P靠近点B,其它同理,

在直角三角形ABF中,由勾股定理,得AB^2=AF^2+BF^2

在直角三角形APF中,由勾股定理,得AP^2=AF^2+PF^2,

两式相减,得,

AB^2-AP^2=(AF^2+BF^2)-(AF^2+PF^2)=BF^2-PF^2=(BF+PF)(BF-PF)

因为AB=AC,AF⊥BC

所以BF=CF(三线合一)

所以(BF+PF)(BF-PF)=(FC+PF)(BF-PF)=BP*PC

3)若P是BC的延长线上一点,线段AB.AP.BP.CP关系为AP^2-AB^2=BP*PC

理由

过A作AF⊥BC,垂足为F

下面以P在线段BC的延长线上为例,其它同理,

在直角三角形ACF中,由勾股定理,得AB^2=AC^2=AF^2+PF^2

在直角三角形APF中,由勾股定理,得AP^2=AF^2+PF^2,

两式相减,得,

AP^2-AB^2=(AF^2+PF^2)-(AF^2+FC^2)=PF^2-FC^2=(PF+FC)(PF-FC)

因为AB=AC,AF⊥BC

所以BF=CF(三线合一)

所以AP^2-AB^2=BP*PC